Selected highlight results from the Pierre Auger Observatory and possible implications - a personal view

{ ICRC 2011 + UHECR 2012 }



### **Energy Spectrum and Energy Scales**

\*

### Elongation Rate and Mass Composition

\*

### Anisotropy, Correlations, and Multiplets

\*

### **Muons and Model Predictions**

# The Pierre Auger Observatory in Argentina

















Auger - Selected Highlights, HAP-Meeting Zeuthen

# SD Energy Calibration by FD



Systematic uncertainty 7% (15%) at 10 EeV (100 EeV) total uncertainty of E-scale : 22% (dominated by Fl.-yield : 14%)

### 2011 exposures, AFYs used, and combined energy spectra



# Auger SD + Hybrid combined spectrum



### ! Steep spectrum above 40 EeV requires excellent energy resolution !

# **Energy Spectra and Energy Scales**

distinct ankle at 4 EeV steep cut off at 40 EeV (GZK ?)

energy resolution ?

PAO and TA energy scales differ by 20%

### **Determination of a common Air Fluorescence Yield**

HiRes, Auger, and TA use different AFY values for their data analysis systematic error on energy scales dominated by AFY

### >

since 2002 - 2011 eight international workshops on Air Fluorescence and several new precise experiments on AFY !

#### >

international working group (Auger, HiRes, TA, ..) with goal : common description of AFY( de/dx, p, T, humidity, ...)

#### >

energy scales could change up to 10%, scale errors would shrink

## A flying UV - flasher for the calibration of fluorescence telescopes







Hans - Otto Klages

# Towards lower energies with an infill array



Hans - Otto Klages

Auger - Selected Highlights, HAP-Meeting Zeuthen

# Even further down in energy by looking higher up : HEAT



Hans - Otto Klages

Auger - Selected Highlights, HAP-Meeting Zeuthen

# Measurements of longitudinal shower development

# Fluorescence Detector:

- $\langle X_{max} \rangle$
- RMS(X<sub>max</sub>)
- full  $X_{max}$ -distributions

# Surface Detector:

- azimuthal asymmetry
  of the signal risetime: Omax
- time difference between µ and shower plane → 〈 X<sup>µ</sup><sub>max</sub> 〉



# Update on X<sub>max</sub> and RMS(X<sub>max</sub>)



Statistics:

• 6744 high quality events

### **Resolution:**

•  $X_{max}$  resolution  $\approx 20$  g/cm<sup>2</sup> verified by multi-eye events

### Systematics:

- X<sub>max</sub>: 10-13 g/cm<sup>2</sup>
- RMS(X<sub>max</sub>): 5 g/cm<sup>2</sup>



## X<sub>max</sub> Data vs Model Distributions



substantial fraction of protons

• compatible with a significant fraction of heavy nuclei



Karl-Heinz Kampert



Karl-Heinz Kampert

Mass composition and elongation rate

Several "mass indicators" in FD and SD data.

All parameters suggest a change to heavier masses above the ankle !

High statistical quality of "mass data" up to 40 EeV

Anisotropy starts above 40 EeV !

More FD observation time needed !!! Take HE data every night ?

### Update of correlation with VCV - AGN



Hans - Otto Klages

Auger - Selected Highlights, HAP-Meeting Zeuthen

## Update on Cen A



KS test yields 4% isotropic probability Largest departure now at 24°: 19 observed / 7.6 expected

### Multiplets and local neutron sources

### Multiplet-Search E > 20 EeV

chance probability : 6%

- → source density  $\approx 10^{-4}$  Mpc<sup>-3</sup>
  - ? the most promising signal ?



### **Neutron Point Source Search**

E >I EeV; no excess near GC

search for HESS / Fermi-LAT sources - also no excess



upper limit of neutron flux in km<sup>-2</sup>yr<sup>-1</sup> (95% CL)

Anisotropy - Correlations - Multiplets

Weak correlation with AGNs

"Crowded area" around CenA

No neutron excess from Galactic Center

Some very interesting multiplets

...but nothing significant yet !

Heavy primaries ? or "Spill over" due to energy resolution ?



### Spectrum, Composition, and Anisotropy



# Models underestimate measured ground signals



# Inclined Showers : models underestimate µ-number

- Inclined showers ( $62^{\circ}$   $80^{\circ}$ ) dominated by HE muons
- show broken circular symmetry; accounted for by  $\mu$ -map
- small EM contribution subtracted from signals  $\textbf{\rightarrow}$   $N_{\mu}$



### difficult to account for by models !

**Conclusions and Outlook** 

The Pierre Auger Observatory is very successful, but there remains a lot to do, e.g.:

energy spectrum and composition from 0.1 EeV to 100 EeV (HEAT)

explore SD mass sensitivity event-by-event above 40 EeV (SD) -- correlations ?

enlarge FD duty cycle for the highest energies -- take EHE data every night ?

improve muon counting (AMIGA / black top tanks) + interaction models

### and

develope new detection schemes for EHECRs (MHz, GHz, ...)

\*

\*

### ... and probably much more as we will learn more !